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Advances in AI are transforming scientific discovery, yet spatial biology, a field that deciphers the
molecular organization within tissues, remains constrained by labor-intensive workflows. Here, we
present SpatialAgent , a fully autonomous AI agent dedicated for spatial-biology research. SpatialA-
gent integrates large language models with dynamic tool execution and adaptive reasoning. SpatialA-
gent spans the entire research pipeline, from experimental design to multimodal data analysis and
hypothesis generation. Tested on multiple datasets comprising two million cells from human brain,
heart, and a mouse colon colitis model, SpatialAgent ’s performance surpassed the best computational
methods, matched or outperformed human scientists across key tasks, and scaled across tissues and
species. By combining autonomy with human collaboration, SpatialAgent establishes a new paradigm
for AI-driven discovery in spatial biology.

1. Introduction

Modern AI is becoming a key tool for scientific discovery (1). Recently, Large languagemodels (LLMs)
(2) have shown promises in accelerating this progress by enabling reasoning, planning, and tool in-
tegration, through autonomous LLM-equipped agents (3). Autonomous agents are AI systems that
iteratively perceive, plan, and act, allowing them to dynamically adapt to tasks with minimal human
intervention. This makes them particularly valuable in more open-ended scientific research, where
they integrate pre-existing knowledge (via LLMs and retrieval-augmented generation) with analyt-
ical actions (in connected tools), and iterative reasoning. In this they are distinct from both prior
automated pipelines, which had to be hard-coded and hence could not adapt to the dynamic needs
of new data analysis, and human-driven analysis, where a seasoned data scientist must iteratively
engage with analysis tools, results, and knowledge, including through prompting of LLMs. Indeed,
very recent studies have demonstrated the effectiveness of autonomous agentic systems in scientific
workflows. Multi-agent reasoning has been used to iteratively refine hypotheses in biomedical re-
search (4), while domain-specific toolsets have enabled agents to automate complex tasks, such as
molecular dynamics simulations (5) and therapeutic reasoning (6). These advances underscore the
transformative potential of AI-driven systems in accelerating scientific discovery across disciplines.
Spatial genomics, a rapidly growing field, offers a particularly compelling case in point. Spatial ge-
nomics aims to deciphers how biomolecules and cells are spatially organized within tissues to in
homeostasis and disease (7). As an emerging area, driven by novel lab technologies that generate
complex high dimensional data, spatial genomics relies on computational methods that are quite
fragmented, require extensive human intervention and do not yet generalize well across diverse
datasets and biological contexts. Moreover, users have to reason over multiple analysis approaches
and complex concepts spanning molecules, cells and multicellular interactions, that require deep
biological knowledge across many cell types, gene programs and interaction mechanisms to inter-
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pret. Thus, in practice, most studies demand substantial commitment from expert analysts and
time-consuming work. We reasoned that LLM-driven autonomous agents could help drive innovative
work in spatial genomics, both accelerating progress and helping make new discoveries.
Here, we introduce SpatialAgent , an LLM agent that autonomously navigates the entire spatial-
biology gamut, from experimental design to multimodal analysis and data-driven hypothesis gen-
eration. Unlike established computational approaches in spatial genomics, which rely on prede-
fined workflows and rigid models, SpatialAgent employs adaptive reasoning and dynamic tool inte-
gration, allowing it to adjust to new datasets, tissue types, and biological questions. It processes
multimodal inputs, incorporates external databases, and supports human-in-the-loop interactions,
enabling both fully automated and collaborative discovery. We evaluate SpatialAgent on multiple
datasets spanning human brain, heart, and mouse colon, with tasks such as gene panel design, cell
and tissue annotation, and pattern inference in cell-cell communication and pathway analysis. Spa-
tialAgent outperforms existing computational baselines, matches or surpasses human experts in key
biological tasks, and accelerates scientific workflows. Beyond efficiency, SpatialAgent enhances the
interpretability of its AI-driven discoveries, bridging the gap between automation and human in-
tuition and legacy knowledge. SpatialAgent sets a new standard for autonomous and collaborative
research in spatial biology, with broader implications for biomedical research and precision medicine.

2. Results

Overview of SpatialAgent We designed SpatialAgent , an LLM-based agent specialized for fully
autonomous spatial-biology workflows, with the flexibility to optionally incorporate human interac-
tions (Fig.1a,Methods ). It operates through a self-governing loop that integrates LLMswith external
tools and databases. SpatialAgent is equippedwith both predefined planning templates (akin to those
analysts train to use as informal "playbooks") and a curated set of domain-specific tools, which are
critical for enhancing LLM performance in scientific problem-solving (8). It also adapts dynamically
to human feedback, newly introduced tools, and previously unseen tasks (Supplementary Fig.8).
SpatialAgent consists of three key modules (Fig.1b): memory, planning, and action. The memory
module maintains both semantic memory of high-level objectives and available tools (e.g., “I want
to design a panel of 500 genes for mouse models with prostate cancers, treated with T-cell infiltration.”)
and episodic memory of short-term steps and evolving context, ensuring continuity in task execution.
When a user queries, the planning module employs chain-of-thought reasoning and self-reflection
prompts (Supplementary Information 1.5, Supplementary Fig.7), optionally leveraging predefined
templates (Supplementary Information 1.4, Supplementary Fig.1, 2, 3) or generating plans de novo
(Supplementary Information 1.7), to break down complex tasks into manageable steps. As execu-
tion progresses, the memory module iteratively refines stepwise plans, dynamically adapting to new
information, such as user modifications or tool execution failures.
The action module executes tasks by selecting appropriate tools, such as retrieving relevant scRNA-
seq datasets, converting gene names between species, or verifying ligand–receptor interactions via
external databases. It also processes data using established libraries (e.g., scikit-learn (9), PyTorch
(10), Scanpy (11)) or generates and executes custom code when needed, integrating information
from multiple sources. The agent’s modular toolbox is easily extensible, enabling customization to
suit user needs (Supplementary Information 1.3, 6).
SpatialAgent operates in either autonomous or co-pilot mode. The autonomous mode executes
complex tasks end-to-end, leveraging pre-defined plan templates and generalizing to unseen requests
(Supplementary Information 1.7), requiring no human intervention beyond the initial query. The co-
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pilot mode enables interactive engagement, allowing users to refine task definitions dynamically
(e.g., pose follow-up questions) as the process unfolds (Supplementary Information 1.8), facilitating
more adaptable and user-guided task execution.
To assess SpatialAgent ’s performance we benchmarked it on three core use cases: gene panel design,
cell and niche annotation, and cell-cell interaction analysis, spanning three plan templates (one per
core use case), 19 specialized tools and five datasets. Specifically, we tested SpatialAgent on gene
panel design for spatial profiling of human brain regions, comparing it to four established computa-
tional methods and 10 human experts; onmultimodal cell and niche annotation of developing human
heart tissue compared to seven human scientists; and on discovery of cell-cell interactions in the tis-
sue remodeling in mice, for open ended discovery of key tissue patterns and associated hypotheses.
In addition, we assessed SpatialAgent ’s ability to generalize to unseen user queries (Supplementary
Information 1.7), and to engage in two ongoing ‘real world’ lab experiments.

SpatialAgent out-performed most tools and human experts in gene panel design To evalu-
ate SpatialAgent ’s ability to autonomously design gene panels, we benchmarked its performance
against computational baselines, human scientists, and a hybrid setting where SpatialAgent refined
initial designs from human scientists (Methods ). We used a Visium spatial transcriptomic dataset of
12 sections from the human dorsolateral prefrontal cortex (DLPFC) from three adult human donors
(12), capturing spatial gene expression across the six-layered cortical architecture. When a user
queries SpatialAgent to design gene panels for the DLPFC, the agent updates its memory with the
objective and available tools (all tools were accessible throughout). It then formulates a plan (i.e.
a sequence of tool calls and decisions), to fulfill the task. This planning is scaffolded by predefined
templates, analogous to how human analysts learn from tutorials or recommended workflows: they
offer a structured yet adaptable blueprint that guides decision-making while allowing for context-
specific variation. These templates help the agent correctly invoke domain-specific tools and reduce
failure modes common in self-generated code, such as hallucinations or improper tool usage (mostly
self-generated code). In this case, since the gene panel design aligns with a known template, Spa-
tialAgent follows it (Fig. 2a), while dynamically adjusting steps based on intermediate results.
Across panel sizes from 50 to 500 genes, SpatialAgent ’s panels consistently outperformed those
from established computational pipelines in terms of cell-type prediction accuracy (Fig. 2b,c, 6.0-
19.1% improvement) and spatial coordinate prediction (Fig. 2d,e), with 𝑅2 gains of up to 47.1% for
some methods, and performing on par with others (HVG, -1.4%). Additional results are (Fig. 2b-
e, Supplementary Fig.17-20). Thus, SpatialAgent autonomously identifies gene sets that capture
biological variance and spatial organization better than standard approaches.
We also compared SpatialAgent ’s performance to that of 10 human experts for the design of gene
panels of three sizes (50, 100, 150 genes). SpatialAgent outperformed 90% of human designs in
cell-type prediction and 95% in spatial Y-coordinate prediction. Importantly, despite variations in in-
dividual human performance and workflow (Supplementary Information 2.2), integrating SpatialA-
gentwith human expertise in the hybrid setting consistently improved outcomes for each human
(maximum improvement: 935.1% in predicting Y-coordinates). To support such integration, Spa-
tialAgentwas designed to accept human-drafted gene panels as input and initialize its internal plan
accordingly. It then evaluated, revised, or extended the design using its reasoning loop and toolset,
effectively integrating into diverse human workflows without requiring standardization. Specifically,
enhancing human designs with SpatialAgent improved cell-type prediction accuracy in 80% of cases
(Fig. 2f,g) and spatial coordinate prediction in 90% of cases (Fig. 2h,i). Interestingly, incorporating
human-designed panels also enhanced the final design compared to the agent alone, with 55% of
hybrid designs outperforming SpatialAgent ’s autonomous runs, highlighting the benefit of human-
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machine collaboration (Fig. 2f–i).

Reasoning and efficiency of autonomous panel design We next analyzed SpatialAgent ’s reason-
ing process, spatial structure preservation, and computational / cost efficiency relative to baseline
methods and human scientists.
As part of its output, SpatialAgent ’s provides detailed reasoning for each gene included in the panel,
revealing that the Agent assigned gene importance scores by combining reference datasets, exter-
nal marker databases, internal knowledge, and human scientist–designed templates (Fig. 3a). The
agent had appropriately increased its confidence in gene selection by prioritizing genes that are sup-
ported by multiple corroborating sources. This integration across knowledge bases increases the
likelihood the agent will overcome gaps in individual databases, reduce bias, and ensure robust and
generalizable performance. Moreover SpatialAgent produces a transparent aggregation of informa-
tion, providing interpretable, gene-level rationales in natural language, explicitly connecting each
gene in the panel to relevant cell types and functional roles (Fig. 3a). This enhances biological
interpretability and can expedite human expert validation.
Because the dorsolateral pre-frontal cortex is organized in distinct cortical layers that define func-
tionally distinct cell types and circuits (12), we also evaluated the clustering structure and spatial
coherence associated with the gene panels from SpatialAgent , standard pipelines and human ex-
perts. Even when reducing the transcriptome to 500 genes, SpatialAgent ’s panels preserve strong
spatial organization and produce well-differentiated clusters (Fig. 3b). These are closely aligned with
the underlying spatial structure by multiple clustering metrics (Silhouette, Davies-Bouldin, Calinski-
Harabasz, and Local Label Agreement), outperforming all baseline approaches (Fig. 3c).
Moreover, the genes prioritized by SpatialAgent reflect known functional activities of the DLPFC (e.g.,
working memory, attention, and executive control) and provide spatially informative signals. For ex-
ample, the three genes with highest importance scores in the SpatialAgent ’s panels are key neuronal
markers (GAD2 (GABAergic inhibitory neurons), SLC17A7 (glutamatergic excitatory signaling), and
GRIN2B (an NMDA receptor subunit)) and display distinct spatial distributions (Fig. 3d,e), spanning
cortical layers, but absent from adjacent white matter. In contrast, the top three selected genes from
Spapros (13) (PCDH15, ATP1A2, NKAIN3) yielded weaker spatial enrichment.
SpatialAgent also provides significant improvements in both runtime and cost, completing its analysis
in around 30 minutes, far faster than human-driven panel design and notably quicker than advanced
computational methods, such as Spapros (Fig. 3f). SpatialAgent offered substantial cost and time
savings relative to some (not all) computational pipelines, and compared to human expert work.
Thus, SpatialAgent allows users to quickly and efficiently benefit from iteration, seamlessly integrat-
ing diverse knowledge bases, with the potential to be combined with expert knowledge in order to
design robust panels for spatial-omics experiments.

Enhanced cell type and tissue niche annotation Accurate and scalable annotation of spatially-
localized cells and tissue niches remains a bottleneck in spatial biology, particularly when it requires
consideringmultimodal information, such as expression profiles, anatomical annotations or histology.
To evaluate SpatialAgent ’s capabilities, we use a high-resolution molecular and spatial cell atlas of
the developing human heart (14), which integrates scRNA-seq and MERFISH spatial measurements
across 6 heart samples collected at 9 to 16 post-conception weeks (142,946 single-cell profiles and
>1.5 million MERFISH-detected cells). We assessed SpatialAgent ’s ability to reconstruct cell-type
organization with both cellular and spatial fidelity. For cell-type annotation, we compared SpatialA-
gent to GPTCellType (15), CellTypist (16, 17), our human experts, and author-provided ‘ground
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truth’ using shared UMAP coordinates and ontology terms (Fig. 4b,d, Methods , Supplementary In-
formation 3.2, 3.3). For tissue niche annotation, we compared SpatialAgent to human experts and
Author-provided annotations (Fig. 4c), as we are not aware of an existing standard pipelines for this
task (Supplementary Information 3.2)).
Overall, SpatialAgent produced consistent, high-quality annotations that overall aligned closely with
the author-provided ground truth, outperformed GPTCellType and CellTypist, and was largely on
par with the best human experts, in terms of accuracy and precision at both coarse and fine scale
(Fig. 4b,d). CellTypist struggles reflect its computational design (assigning per-cell annotations us-
ing a pre-trained neural network, leading to noisier predictions), training bias toward immune cells,
and design for scRNA-seq, rather than MERFISH data with a more limited feature space. GPTCell-
Type and human experts failed to identify immune and neuronal cells, and human experts also miss
vascular smooth muscle cells. While SpatialAgent performed well, it did not fully recover epicar-
dial cells, where the author’s annotations distinguish between “epicardium-derived progenitor cells”
and “epicardial” (as did GPTCellType, see Supplementary Fig.23-26), even though epicardial cells
are relatively abundant in the dataset, and were present in both the queries and instructions. In-
deed, GPTCellType and SpatialAgent failed to fully capture this tissue-specific feature, even when
reference datasets were provided. LLM-based methods, including GPTCellType and SpatialAgent ,
tended to default to the most common annotations in their internal knowledge rather than incorpo-
rating dataset-specific biological context. In contrast, some human experts leveraged this context to
provide more accurate epicardial cell annotations (Supplementary Information 3.5).
For tissue niche annotation, we compared SpatialAgent to human experts and Author-provided anno-
tations (Fig. 4c), because we are not aware of existing standard pipelines for this task. As possibly the
first method for automated tissue niche annotation, SpatialAgent effectively delineated anatomical
regions by leveraging multimodal information from anatomical reference images to enhance spa-
tial context. This allowed SpatialAgent to capture fine-grained spatial structures consistently across
samples. Its performance benefits from key design choices, such as the removal of small clusters
in UTAG (18) (Supplementary Information 3.4) and iterative refinement through sample-wise ag-
gregation (below). SpatialAgent performed on par with or better than human experts in terms of
accuracy and precision at coarse and fine scale (Fig. 4f), generalizing well across tissue regions.
Notably, some human experts introduced creative annotations, such as labeling the outer layer as
“Epicardium”, which was absent in the original Author-provided annotations. Since this discrepancy
lacks a direct reference, we categorize this region as “unmatched” (Supplementary Information 3.2),
as some of these could be instances of enhanced performance of a new human annotator compared
to the original ones. Overall, SpatialAgentmatched the performance of the best human annotators
and outperformed the rest (Supplementary Information 3.5). Moreover, SpatialAgent dramatically
reduced both annotation costs and time (Fig. 4e,g). Thus, SpatialAgentmaintains high annotation
quality while offering a scalable, cost-effective alternative to manual expert annotation for large-scale
spatial transcriptomic studies.

Behavior analysis in multimodal annotation To understand the basis of SpatialAgent ’s improved
annotation quality we analyzed its behavior and choices. For example, GPTCellType annotated Lei-
den Cluster 18 as cardiac fibroblasts, whereas SpatialAgent annotated them as neurons, consistent
with the Authors’ annotation (Fig. 5a). While GPTCellType took a gene centric approach that relied
on expression of extracellular matrix-related genes (e.g., POSTN, COL2A1, and COL9A2), which are
commonly associated with fibroblasts, SpatialAgent combined transferred cell-type composition and
recognizes a high neuronal cell proportion in the region (0.54), along with neuronal or neural devel-
opment markers (NRXN1). SpatialAgent also recognized an overlap with cardiac-related genes with
neuronal markers highlighting a potential caveat, which gene-centric methods may overlook.
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Similarly, SpatialAgent enhanced tissue niche annotation through a collective intelligence approach,
refining spatial assignments across samples by integrating multimodal reasoning (Fig. 4b). The
agent’s initial sample-wise annotations included several inconsistencies when transferring labels from
the example anatomical image provided to the spatial transcriptomic data. For example, it misla-
beled the ‘Right Atrium’ of one sample as ‘Tricuspid Valve’, and the ‘Left Ventricle’ of another sample
as ‘Pulmonary Vein’. (Fig. 4b, left). These initial discrepancies highlight the challenge of local-
ized annotation variability, partially due to the limitations of visual reasoning in current LLMs (19).
However, by aggregating spatial reasoning across all samples, SpatialAgent systematically resolved
these ambiguities, leading to a coherent and correct anatomical interpretation of these regions in all
samples (Fig. 4b, right). Overall, SpatialAgent integrated anatomical reference images, molecular
profiles, and cell-type information, to maintain annotation consistency across samples, surpassing
traditional per-sample annotation approaches. The use of a standardized naming scheme further
ensures comparability across datasets.
Thus, SpatialAgent can effectively automate and standardize cell and tissue niche annotation, pro-
viding a biologically meaningful and spatially coherent interpretation of spatial transcriptomics data.

Mining data patterns, summarizing findings, and proposing hypotheses with SpatialAgent
We next evaluated SpatialAgent ’s capability to extract complex biological insights from spatial tran-
scriptomics data. To avoid any knowledge contamination, we used a recent mouse colitis study
(20), which was published after GPT4o’s knowledge cutoff date (Methods ). This dataset consists of
MERFISH analysis of 940 genes in 52 tissue sections from 15 mice across four conditions: prior to
DSS-induced inflammation, early in colitis, during peak inflammation and after a recovery period.
The study includes author-annotated cells and spatial neighborhoods.
Upon receiving a user query (e.g., “I want to infer cell-cell interactions in the tissue and how they
change over time. <some additional descriptions on the data file>”), SpatialAgent autonomously
executed a multi-step analysis pipeline: it first summarized condition-specific, cell-type compositions
and spatiotemporal changes, and then computed cell–cell communication scores using LIANA+(21),
a framework integrating cellChat (22), cellPhoneDB (23), and additional gene set enrichment and
factor analysis steps. It culminated by generating a detailed 7,000-word report that uniquely operates
in the interaction mode, enabling iterative refinements through user-specified follow-up queries and
new tasks via “memory hacking” (Fig. 6a, Supplementary Fig. 15).
Comparing SpatialAgent ’s interpretations with the original study, we observed broad agreement
on key findings, particularly regarding inflammation-associated fibroblasts (IAFs) and significant
immune infiltration (Fig.6b), which are hallmarks of IBD (24) and were particularly highlighted
in the original paper (20). Notably, SpatialAgent uncovered additional insights, such as enhanced
TGF-𝛽 signaling, submucosal remodeling, and fibroblast–pericyte interactions—elements that were
not explicitly emphasized in the original study. These findings suggest a pivotal role for TGF-𝛽-
induced fibroblast activation in tissue repair and fibrosis (25). In particular, SpatialAgent ’s analysis
proposes fibroblast polarization, mediated through TGF-𝛽 and IL-11 signaling, as a critical process
orchestrating tissue regeneration (26). SpatialAgent proposes that the observed interplay between
IAFs and pericytes appears to drive extracellular matrix remodeling, a mechanism that aligns with
prior studies implicating IL-11 in fibrosis and tissue repair (27).
These insights could have significant implications. Identifying key signaling pathways, such as TGF-
𝛽 and IL-11, offers potential therapeutic targets, and the distinct spatial transcriptomic signatures
uncovered by SpatialAgentmight be promising biomarker candidates for assessing disease severity
and predicting treatment responses.
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Adding customized genes to an existing panel for a specialized system Finally, we applied
SpatialAgent to optimize experimental design in an ongoing wet lab study. Specifically, we tasked
SpatialAgentwith selecting 100 additional genes to enhance the Xenium 5k pan-tissue panel for a
study on prostate cancer mouse models under different treatment conditions (Fig. 7a). This process
involved a hybrid collaboration between SpatialAgent , human scientists, and suppliers to ensure the
selection was data-driven, biologically informed, and manufacturability-compliant.
To systematically evaluate the impact of these customized gene panels, we first benchmarked their
selection against a reference scRNA-seq dataset from a similar prostate cancer system (28). This en-
sured that the panel captured biologically relevant functions and pathways. The additional 100 Spa-
tialAgent -selected genes improved the resolution of stromal, immune, and epithelial compartments,
particularly in regions critical to prostate cancer progression and immune interactions (Fig. 7b,c,
Supplementary Fig. 75-74).
Specifically, Xenium+SpatialAgent enhanced the definition of basal epithelial cells, fibroblasts, and
prostate microvascular endothelial cells, leading to clearer population boundaries (Fig. 7b). While
the standard Xenium panel performed slightly better in classifying classical monocytes and some
T cell populations, Xenium+SpatialAgent provided superior resolution for stromal and epithelial
compartments: key components in prostate cancer progression (Supplementary Information 5.2).
Moreover, Xenium+SpatialAgent substantially improved clustering quality across multiple metrics
(Fig. 7c). The selected genes spanned key overlapping processes (Fig. 7d) enriched in a reference
dataset with notable T-cell infiltration. Analysis using the enhanced Xenium+SpatialAgent set also
refined inferred cell–cell interactions within the tumor microenvironment, particularly communica-
tion between basal epithelial, fibroblast, and immune compartments (Fig. 7e). Interaction strengths,
computed via CellPhoneDB, revealed distinct signaling differences, refining our understanding of im-
mune–tumor crosstalk.
We further investigated how SpatialAgent ’s customized gene selections enhance the detection of
cell-cell interactions within the tumor microenvironment, specifically examining communication
between basal epithelial cells, fibroblasts, and immune cells (Fig. 7e). By calculating interaction
strengths using CellPhoneDB, we revealed distinct signaling patterns that provide putative insights
into immune-tumor crosstalk. The Xenium-only panel (Supplementary Fig. 76) primarily identified
fibroblast-immune interactions involving modulatory ligands such as Jag1-Notch2 and Vcan-Tlr2. In
contrast, incorporating SpatialAgent ’s customized design (Supplementary Fig. 77) highlighted the
importance of laminin-integrin signaling networks previously undetected. This enhanced approach
revealed cell type-specific communication patterns: fibroblasts engaged in numerous robust interac-
tions across immune subtypes, while basal epithelial cells displayed fewer but functionally important
integrin-based signals. Of particular interest, our integrated analysis uncovered distinct regulatory
circuits in specific immune populations (e.g., Igf1-Insr in Tregs) and emphasized the role of basal
epithelial cells in shaping the tumor microenvironment through targeted signaling pathways. These
refined interaction maps demonstrate the critical importance of optimized gene panel selection for
accurately dissecting complex cellular communications and may inform future therapeutic strategies
targeting these pathways.

3. Discussion

Computational analysis in spatial genomics has been a bottleneck and SpatialAgent introduces a sub-
stantial shift that will accelerate progress and empower scientists. By uniting LLM-based reasoning,
dynamic tool execution, and multi-modal data analysis within a self-governing system, it merges the
interpretability and adaptability typically associated with expert-driven strategies, while offering the
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scalability and throughput gains of computational pipelines. In addition to substantially streamlin-
ing existing workflows, which were difficult to automate, it enables AI-driven hypothesis generation,
guided experimentation, and faster data-to-discovery loops.
One of the most significant advantages of autonomous AI agents in this context is the potential to
democratize sophisticated analyses. Current spatial biology pipelines often require specialized com-
putational skills and substantial resources, creating barriers for labs with limited infrastructure or
for bench scientists who may not be as well versed in coding or computational analysis. By automati-
cally selecting tools, orchestrating analyses, and making interpretable decisions, SpatialAgent—and
AI agents like it—can empower researchers to execute optimal workflows without extensive com-
putational expertise, and combine them with their unique human abilities to formulate interesting
questions, and engage with the agent. At the same time it liberates computational scientists from
the need to perform relatively rote analyses, and allows them to focus on developing novel analytic
strategies, new methods, and deeper analyses. Thus, this broader access has tangible benefits for
the research community, from speeding up routine annotations to accelerating the identification of
emergent biological patterns that might otherwise be overlooked.
An agent based approach also promises greater synergy between computational predictions and
wet-lab validation. Traditionally, refining experimental designs is a lengthy, iterative process: initial
hypotheses are tested in the lab, new data are generated, and computational analyses are performed
offline. In contrast, AI agents can offer near-real-time feedback and suggest potential avenues for hy-
pothesis refinement, enabling a more “closed loop” where computational insights more directly guide
wet-lab experiments. By quickly highlighting the most promising markers or pathways, SpatialA-
gent can help researchers iterate more efficiently, saving time, resources, and, importantly, allowing
investigators to focus on creative exploration rather than manual data wrangling.
Nevertheless, challenges remain. First, building deeper domain-specific knowledge into the sys-
tem will be crucial, particularly for niche or emerging biological processes underrepresented in
current training data. Second, unlike standard computational analyses, agent-driven approaches
can have the same limitations as humans, including biases, hallucinations, and other errors. Auto-
mated uncertainty quantification would strengthen trust by distinguishing between high- and low-
confidence predictions, allowing scientists to concentrate validation efforts where it is most needed.
Furthermore, while multi-agent architectures hold promise for distributing specialized tasks among
dedicated “expert” agents, their success depends on robust coordination protocols and reasoned
consensus-building to avoid compounding errors or generating contradictory outputs (29).
Looking ahead, we envision AI autonomous agents evolving beyond passive analysts into active col-
laborators capable of context-aware reasoning and counterfactual experimentation. With refined
planning algorithms, such agents could propose targeted experimental designs to test competing
mechanistic hypotheses, serving as intelligent research partners who generate new questions rather
than merely answering old ones. Coupled with advancements in large-scale single-cell multi-omics,
clinical diagnostics, and real-time imaging, the next generation of AI-driven systems may redefine
the boundaries of biomedical discovery. Ultimately, by reducing drudgery, enhancing interpretability,
and unleashing creative potential, SpatialAgent illustrates how autonomous AI agents can save time,
augment human ingenuity, and accelerate breakthroughs in spatial biology and beyond.
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a

b

Figure 1: Overview and modular design of SpatialAgent . (a) Overview. SpatialAgent is an LLM-
equipped autonomous agent that tackles a broad set of tasks in spatial biology, including (1) gene
panel design for the experimental stage, (2) cell-type and tissue-niche annotation for the obser-
vational analysis stage, and (3) findings summarization and (4) generating hypotheses related to
cell–cell interactions. SpatialAgent supports multimodal inputs and cross-species analyses. (b) Key
modules. The action module (left) executes tasks such as retrieving reference datasets, converting
gene names, verifying ligand–receptor interactions using existing databases, processing data with
established software packages (e.g., numpy) or generating and executing custom code, while rea-
soning over and aggregating information from multiple sources. The memory module (top right)
maintains both semantic memory (high-level objectives) and episodic memory (short-term steps and
context). The planning module (bottom) manages task planning via chain-of-thought reasoning and
self-reflection, iteratively refining plans to achieve specific goals.
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Figure 2: Gene panel design by SpatialAgent . (a) Illustrative step wise agent autonomous work-
flow. Schematic of the first few steps in the SpatialAgentworkflow for designing a gene panel in the
dorsolateral prefrontal cortex (DLPFC). (b-f) SpatialAgent outperforms established computational
baselines for cell type and spatial coordinate prediction. (b,c) Cell-type prediction accuracy (b,
y axis) and relative improvements over computational baselines (c, x axis) for designing 50-500
gene panels by SpatialAgent or each of several established methods. Box plots show medians (cen-
ter lines), interquartile ranges (boxes), and 1.5× interquartile ranges (whiskers). Circles denote
outliers. Results are averaged over 10 runs across all 12 DLPFC samples. (d,e) Spatial coordinate
prediction performance (d, y axis) and relative improvements (e, x axis) by SpatialAgent or each
of several established methods. Results are averaged over 10 runs across all 12 DLPFC samples.
Box plots as in (b,c). (f,g) Cell-type prediction accuracy (f, y axis) and relative improvements (g, x
axis) for SpatialAgent , human scientists, and hybrid approaches in which SpatialAgent incorporates
human-designed templates. Solid bars represent individual scientists, and the striped bars to their
right show performance gains when combined with SpatialAgent . (we report the minimum, median,
mean, and maximum improvements) averaged across all three panel sizes.) (h,i) Spatial coordinate
prediction performance (h, y axis) and relative improvements (i, x axis) for SpatialAgent , human
scientists, and hybrid approaches. As in (f, g), each bar represents a human scientist, with the paired
bar indicating combined performance.
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Figure 3: Reasoning, performance, and efficiency of SpatialAgent in gene panel design.
(a)Agent reasoning in annotation. Illustrative examples of multiple sources of information - reference
datasets, external marker databases, internal knowledge, and human scientist–designed templates -
used by SpatialAgent to assign importance scores in the “Estimate Importance of Each Gene” step for
gene panel design in the DLPFC dataset. (b-e) Performance on cell type separation by cortical layer.
(b) UMAP embedding of spatial transcriptomic profiles (dots) consisting of 500 selected genes from
Spapros, SpatialAgent , or the full gene set ( 21,000 genes) and colored by cortical layer annotation.
(c) Clustering evaluation metrics (y axes, labeled on top) with 500-gene panels selected by each
method (x axis) and with all 21,000 genes. Arrows: desired direction of alignment with spatial
organization. (d,e) Spatial expression patterns of the top three genes selected by SpatialAgent (d)
and Spapros (e). (f,g) Runtime and cost performance. Runtime (f, y axis, log scale) and cost estimates
(g, y axis, log scale) for each method (x axis) across three runs. Human time is averaged over self-
reported usage. Cost estimates are based on standard vendor rates (e.g., Amazon Web Service,
OpenAI) for computational baselines and SpatialAgent . Human labor costs are projected assuming
an annual salary of $100,000 USD (assuming 8 work hours per weekday) (Methods ).
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Figure 4: Cell type and tissue niche annotation by SpatialAgent . (a) Illustrative workflow. Spa-
tialAgent integrates multimodal information (i.e., anatomical images, MERFISH data) for tissue niche
annotation, followed by sample-wise aggregation and refinement via collective intelligence. (b–d)
Cell type annotations. (b) UMAP of cells colored by annotations from GPTCellType, CellTypist, a
representative human scientist (𝐿𝑎, second-best in accuracy), SpatialAgent , and the original study.
Colors indicate eight major cell types, where ‘VSMCs’ denotes ‘vascular smooth muscle cells’. Visual-
izations and scores are aggregated across all samples using the author annotations as ground truth
(same rule applies below). (c) Annotation performance: accuracy, macro precision, and micro preci-
sion (y axis) across methods (x axis). (d) Confusionmatrices comparing annotations from CellTypist,
GPTCellType, human scientist 𝐿𝑎, and SpatialAgent to ground truth, sharing the same coloring scale
of 0-1. (e-f) Tissue-niche annotations. (e) Annotated tissue niches by SpatialAgent , human scien-
tist 𝐿𝑎, and the original author. Colors denote all seven major niches (legend); where ‘unmatched’
indicates regions with no correspondence to author annotations (Methods ). (f) Accuracy, macro
precision, and micro precision (y axis) across methods (x axis). (g, h) Cost and time. Estimated cost
(g, y axis, USD, log scale) and time (h, y axis, hr) for SpatialAgent and human scientists (x axis),
estimated as in Fig. 3.
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a

b

Figure 5: Multimodal cell and niche annotation with SpatialAgent . (a) Comparison of GPT-
CellType and SpatialAgent annotations. Reasoning underlying the annotation of Leiden Cluster 18
(red) from MERFISH data by GPTCelltype (middle) and SpatialAgent (bottom). GPTCellType as-
signs cell types based on the top 20 differentially expressed genes in the cluster (top), annotating the
cluster’s cells as cardiac fibroblasts, while SpatialAgent incorporates additional transferred cell-type
composition information, suggesting a neuronal identity (with caveats) and matching the authors’
annotation (Supplementary Fig.22). (b) Collective-intelligence design for tissue-niche annotation in
SpatialAgent . Sample-wise annotations (left) are refined by aggregating reasoning across samples
(right), improving final niche assignments. Incorrect annotations in the initial sample-wise outputs
are marked in red (left). This process optionally integrates molecular and cell-type information to
enhance the performance.
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Figure 6: Mining complex data patterns with SpatialAgent . (a) Overview of the workflow with
the interaction mode of SpatialAgent (Methods and Supplementary Information ). After SpatialA-
gent autonomously executes a sequence of actions, the user can ask follow-up questions or initiate a
new task. (b) Comparison of interpretations between the original authors and SpatialAgent . Shared
(top) and distinct (bottom) findings between the authors (left) SpatialAgent (right) analyses.
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Figure 7: Designing 100 customized genes alongside the Xenium 5k pan-tissue panel for mouse
models of prostate cancer under various treatments. (a) Overview of experimental workflow.
(b,c) Improved cell type distinctions with Xenium+SpatialAgent panel. (b) UMAP embedding of
cell profiles using different gene subsets, colored by cell-type annotations. Xenium: standard 5k
pan-tissue panel; Xenium + Random: 5k panel combined with 100 randomly selected additional
genes; Xenium + SpatialAgent : 5k panel with 100 genes selected by SpatialAgent ; Full Set: com-
plete profiles from the reference scRNA-seq dataset. (c) Clustering metrics and cell-type accuracy
(y axis) for each method (x axis). Xenium + Random results are averaged over three independent
random-gene selections. Arrows: direction of improved performance. (d) SpatialAgent -selected
genes are enriched for key processes (Methods ). Enrichment (node size, -log(P value)) and over-
lap (edge width, Jaccard index) of SpatialAgent selected genes with genes from different pathways
(text boxes), and the specific overlapping gene names. (e) Cell–cell interaction scores are enhanced
with Xenium+SpatialAgent panel. Strengths (from CellPhoneDB) of predicted cell-cell interactions
from Basal and Fibroblast populations to immune cells, using Xenium (left) or Xenium + SpatialA-
gent genes (right). (Methods ).
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Methods Summary

SpatialAgent . SpatialAgent ’s core framework consists of three key components: a memory module
that maintains both semantic and episodic information, a planning module that employs chain-of-
thought reasoning for task decomposition, and an action module that executes specialized functions
through a curated toolbox. The agent operates through a self-governing loop where it first encodes
objectives and available tools in memory, formulates a concrete plan with sequential steps, executes
these actions while recording outcomes, and iteratively refines its approach based on results and
potential execution failures. This architecture enables adaptation to new datasets, tissue types, and
biological questions without requiring predefined rigid workflows. Full implementation details and
prompt instructions are provided in Supplementary Information .

Co-pilot mode. To support a co-pilot mode for SpatialAgent , memory hacking was employed,
where the agent’s memory is updated based on the user’s new input each time. This allows SpatialA-
gent to adjust its plans and actions or provide useful content based on the user’s queries. Further
details are provided in Supplementary Information .

Computational Baselines. SpatialAgentwas compared against established computational meth-
ods across each of three primary use cases. For gene panel design, it was benchmarked against (1)
selection of highly variable genes (HVG) with Seurat (30), (2) GeneBasis (31), (3) Persist (32), and
(4) Spapros (13). These range from simple variance-based methods to dedicated methods for spatial
transcriptomics. For cell type annotation, SpatialAgentwas compared with CellTypist (17) (a tradi-
tional approach), and GPTCellType (15) (an LLM based approach). For cell-cell interaction analysis,
SpatialAgentwas assessed for its ability to integrate tools from the LIANA framework and generate
biologically meaningful insights. Detailed implementation parameters for all baseline methods are
provided in Supplementary Information .

Human scientist performance. To benchmark SpatialAgent against human expertise, expert sci-
entists were recruited with background in computational method development, experimental spatial
transcriptomics, and biological data analysis. For the gene panel design task, 10 scientists were pro-
vided with the DLPFC dataset and asked to design gene panels of three different sizes (i.e., 50, 100,
and 150 genes). For the cell type and tissue niche annotation task, 7 scientists annotated the de-
veloping heart dataset. Participants were explicitly instructed not to use LLMs during their analysis
but were otherwise free to employ any tools or resources typically used in their workflow. The ap-
proaches, time spent, and final results were documented through a standardized form. Full task
descriptions and instructions provided to participants are detailed in Supplementary Information .

Evaluation metrics. For gene panel design, metrics were employed as previously described for
Persist and Spapros: cell-type prediction accuracy, spatial coordinate prediction performance, and
clustering qualities. These metrics assess both the biological relevance of selected genes and their
ability to capture spatial organization within tissues. For cell and niche annotation, performance was
evaluated by accuracy, macro precision, and micro precision against author-provided annotations as
ground truth. Metrics that are difficult to define or distinguish between baselines (e.g., expression
constraints from Spapros) were avoided to ensure fair and interpretable comparisons.

Code availability. The implementation of SpatialAgent and tutorial notebooks for reproducing the
results in this manuscript are available at https://github.com/Genentech/SpatialAgent.
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Supplementary Information

1. SpatialAgent

1.1. Configurations of base LLMs

SpatialAgent development primarily utilized OpenAI’s GPT-4o model (version released on August
6th, 2024, knowledge cutoff October 2023). GPT-4o supports a context window of 128,000 tokens
and can generate responses up to 16,384 tokens in length, as in OpenAI’s documentation: https:
//platform.openai.com/docs/models.
SpatialAgentwas also adjusted for Anthropic’s Claude-3.5-Sonnet (released on October 22, 2024,
training data cutoff April 2024). Claude-3.5-Sonnet supports a context window of 200,000 tokens
and can generate up to 8,192 tokens per response, according to its documentation: https://docs.
anthropic.com/en/docs/about-claude/models. Without further adaptations, we found that
the current agent framework can directly work with Claude-3.7-Sonnet (released on Fed 19, 2025).

1.2. LangChain framework

To enable structured reasoning, dynamic tool invocation, and memory persistence within SpatialA-
gent , LangChainwas used, as amodular framework for building LLM-powered applications. LangChain
allows us to compose multi-step workflows that incorporate retrieval-augmented generation (RAG),
structured decision-making, and domain-specific tools.
In SpatialAgent , LangChain is employed with two key aspects:

• Tool curation and orchestration: LangChain’s agent framework is used to orchestrate calls
between LLMs and specialized tools for spatial biology. Agents dynamically decide which tools
to invoke based on user queries or analysis objectives, ensuring efficiency in various tasks.

• Memory and context handling: To maintain consistency across multi-turn interactions and
complex workflows, LangChain’s memory modules are used, allowing intermediate outputs
(e.g., retrieved datasets, computed gene scores) to persist across reasoning steps.

1.3. Tools developments

Threemain types of curated tools were used in SpatialAgent . The tool collection below can be readily
extended, allowing for customization and integration of additional functionalities to meet specific
research needs. This modular design enables researchers to incorporate their own specialized tools,
databases, or analytical methods while maintaining compatibility with the existing framework.

1.3.1. Databases

Multiple databases were integrated to support retrieving reference datasets and conduct basic anal-
ysis, leveraging their structured metadata and large-scale annotations.

Chan-Zuckerberg Initiative (CZI) CELLxGENE is a scalable single-cell data platform offering ac-
cess to over 50 million unique cell profiles with standardized metadata, facilitating meta-analyses,
cross-dataset integration, and computational modeling (33). CELLxGENEwas accessed via its Python
API at https://chanzuckerberg.github.io/cellxgene-census/ on November 26, 2024.
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The retrieved database, built on November 25, 2024, follows census schema version 2.1.0 and dataset
schema version 5.2.0. It comprises 135,560,133 total cell profiles from 1003 datasets, including
71,730,590 unique cell profiles, annotated across 780 distinct cell types, 63 tissues, from 22,009
human donors and 4,752 mouse models.

PanglaoDB is a web-based resource for exploring mouse and human single-cell RNA-seq data,
integrating over 1,000 experiments withmore than 4million cell profiles (34). It offers a user-friendly
interface, standardized pre-processing pipelines, cell-type inference, and a curated marker gene
compendium to enhance data accessibility and biological insights. The database was downloaded in
TSV format from https://panglaodb.se/markers.html on May 20, 2024 (last update March
27, 2020 (10:44:00 CET)). The database contains 8,286 associations, spanning 178 cell types, 4,679
gene symbols, and 29 tissues.

CellMarker2 provides amanually curated collection of experimentally supportedmarkers for 2,578
cell types across 656 tissues in humans andmice, totaling 83,361 tissue-cell type-marker associations
(35), across 26 marker types (e.g., protein-coding genes, lncRNAs) derived from 24,591 studies. The
database was downloaded in csv format from http://www.bio-bigdata.center/CellMarker_
download.html on Oct 20, 2024.

PROGENy provides footprints of pathway activity by focusing on transcriptionally responsive genes
rather than pathway components themselves (36). The database contains consensus gene signatures
for 14 key signaling pathways (EGFR, Hypoxia, JAK-STAT, MAPK, NFkB, p53, PI3K, TGFb, TNFa,
Trail, VEGF, WNT, Androgen, and Estrogen), each represented by 100 responsive genes determined
from thousands of perturbation experiments. PROGENy was accessed via its R package (version
1.18.1) from Bioconductor on June 2, 2024, which provides model matrices for both human and
mouse organisms and supports weight matrices of varying sizes (100, 300, and 500 genes per path-
way) to balance specificity and coverage depending on analytical needs.

LIANA (LIgand-receptor ANalysis frAmework) is a comprehensive resource for cell-cell communi-
cation inference that integrates multiple databases and analytical methods into a unified framework
(21). It aggregates ligand-receptor pairs from CellPhoneDB, CellChat, NATMI, ConnectomeDB, and
other resources, resulting in a comprehensive interaction collection covering more than 3,000 unique
interactions. Its curated, non-redundant ligand-receptor interactions are annotated for complex
structures (including heteromeric proteins), enabling accurate inference of intercellular signaling
networks. LIANA version 0.1.8 was accessed on May 25, 2024, via its Python interface.

1.3.2. Data Processing

CZIInfo is a retrieval tool designed to extract relevant cell-type and tissue information from the
CZI reference dataset based on specified criteria. It allows users to query by tissue, organism (Homo
sapiens or Mus musculus), disease state, and dataset identifier. The tool loads census metadata from
czi_census_datasets_v4.csv (codes on how to curate this are provided in https://github.
com/Genentech/SpatialAgentData) and leverages an LLM-based tissue namematching pipeline
to refine search results. It then filters dataset entries based on tissue and disease annotations, ex-
tracting and saving reference single-cell data. Cell types and tissues are further summarized using
an LLM, and results are stored as structured text files for downstream annotation. Queries are exe-
cuted via API-based dataset retrieval and processed using structured filtering and embedding-based
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similarity search.

GeneVoting is an integration tool that consolidates multiple rounds of gene importance scoring
to generate a refined gene panel. It aggregates importance scores from three iterations, normalizes
gene names, and ranks genes based on cumulative importance. To ensure comprehensive coverage,
it dynamically adjusts rankings to maintain representation across all cell types. The tool filters and
selects the top genes while summarizing their associated reasons. The final gene panel is saved in a
structured CSV format for downstream analysis, with automatic cleanup of intermediate files.

PreProcess automates the preprocessing of spatial transcriptomics data using Scanpy (11). It filters
low-quality cells and genes, normalizes expression values, and applies log transformation to enhance
downstream analyses. The tool performs dimensionality reduction via PCA, computes neighborhood
graphs, and generates UMAP embeddings to capture spatial relationships. The processed dataset
is saved in .h5ad format with standardized gene naming conventions, ensuring compatibility with
subsequent computational workflows.

HarmonyTransfer enables the transfer of cell type annotations from CZI reference datasets to
spatial transcriptomics data. It preprocesses and integrates single-cell RNA-seq and spatial datasets
by identifying shared genes, normalizing expression values, and performing batch correction using
Harmony integration. A multi-layer perceptron (MLP) classifier is trained on the reference dataset’s
principal components and applied to predict cell types in the spatial dataset. The final transferred
labels are saved in structured CSV format for downstream analysis, ensuring a robust and scalable
approach to cell type annotation in spatial omics studies.

MainUTAG applies the UTAG computationalmethod (18) to identify spatially coherent tissue niches
based on transcriptomic similarity. It clusters spatial transcriptomics data using the Leiden algorithm
with adaptive resolution selection, optimizing for niche structure while maintaining biological inter-
pretability. Small clusters are reassigned based on nearest-neighbor similarity to ensure robustness.
The tool generates and saves structured outputs, including niche annotations in CSV format and vi-
sualizations of spatial niche distributions. These results support downstream analyses by providing
high-resolution spatial context for cell-type organization.

CellTypeAnnotation similar as GPTCellType (15), is an automated clustering and annotation tool
for spatial transcriptomics data, leveraging gene markers and reference-transferred labels to infer
main-level cell types. It clusters cells using the Leiden algorithm and identifies marker genes via
Wilcoxon rank-sum testing. The tool calculates cell type compositions within each cluster and em-
ploys a language model to assign cell types based on marker profiles and ontology constraints. Anno-
tations are further refined through LLM-driven organization. Results, including annotated cell types
and justification reasons, are saved in structured formats. The tool also generates UMAP visualiza-
tions for both clustering and final cell-type assignments to facilitate interpretation.

TissueNicheAnnotation is a multimodal annotation tool designed to infer tissue niches by inte-
grating spatial transcriptomics data, cell type labels, and anatomical priors. It accepts preprocessed
spatial data in .h5ad format alongside main-level cell type annotations and niche clustering results.
The tool first extracts spatial features and visualizes niche clusters, incorporating anatomical refer-
ence images to enhance niche understanding. Using a language model, it annotates tissue niches
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by considering spatial location, cell composition, and enriched gene sets. The tool also harmonizes
annotations across multiple samples via an LLM-driven consensus mechanism. Final annotations,
including tissue niche labels and supporting justifications, are saved in structured formats for down-
stream analysis. Spatial distributions of annotated niches are visualized to facilitate interpretation.

DynamicsInference performs cross-condition dynamics analysis in spatial transcriptomics data,
integrating factor, cell-type, and pathway analyses. It extracts factor loadings, maps sample con-
ditions, and conducts pairwise statistical tests to identify significant changes across experimental
groups. The tool ranks cell-type contributions to key factors and detects enriched pathways using
structured scoring. Results are saved in a structured .pickle format, providing a comprehensive
dataset for downstream interpretation and integrative analysis.

CCIContext infers context-specific cell-cell interactions from spatial transcriptomics data using the
Tensor-Cell2cell framework. It integrates ligand-receptor analysis, accounts for batch effects, and
identifies condition-specific interaction patterns. The tool constructs a four-dimensional interaction
tensor across samples, cell types, and signaling pathways, applying tensor decomposition to extract
interpretable factors. It further performs pathway enrichment analysis using PROGENy to link ligand-
receptor activity with downstream signaling. Results include interaction heatmaps, factor analysis,
and pathway scores, saved in structured formats for downstream interpretation.

1.3.3. Aggregation

GeneImportance is an automated pipeline for estimating the importance of marker genes within
cell types based on reference datasets. It processes marker gene information from multiple sources,
e.g., CZI, PanglaoDB, and CellMarker2, and utilizes an LLM to infer gene importance scores itera-
tively. The tool first extracts relevant cell-type and gene associations, then queries an LLM to rank
genes based on their relevance. The inferred importance scores are reformatted and validated before
aggregation into a structured CSV file. The final output provides a ranked list of genes with assigned
importance scores, supporting downstream cell-type characterization and feature selection.

ReportGeneration automates the synthesis of spatial transcriptomics analysis results into a struc-
tured scientific report. It integrates findings from multiple analyses, including spatial patterns, cell-
cell interactions, and condition-specific effects, filtering for statistically significant factors. The tool
processes large-scale data using chunking strategies, applies language models for structured sum-
marization, and generates coherent discussions and conclusions. The final report is formatted with
background context, dataset descriptions, and analytical insights, ensuring comprehensive documen-
tation for downstream interpretation.

SummarizeConditionTool, SummarizeCellTypeTool, and SummarizeTissueRegionTool facil-
itate the structured analysis of spatial transcriptomics data by summarizing condition-specific pat-
terns, cell-type distributions, and tissue-region characteristics. The tools leverage an LLM to generate
detailed descriptions both per sample and across conditions. They integrate contextual metadata,
including tissue type and dataset information, to enhance interpretability. Condition summaries
capture key differences across experimental groups, cell-type summaries contextualize distributions
across tissue regions, and tissue-region summaries provide insights into spatial organization. The
outputs are structured as JSON files for downstream analyses and reporting.
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1.3.4. General purpose

Coding powers SpatialAgent to generate and execute custom functions for any analyses. It sup-
ports Python and shell scripts with emphasis on data analysis. The tool handles various data input
/ output formats, maintains execution context, and provides error handling. For spatial transcrip-
tomics, Coding facilitates custom statistical tests, specialized visualizations, and integration with
external packages not explicitly covered by other tools. Though it offers great flexibility (ideally
all the tools can be generated by the LLM on-the-fly), this tool indeed requires a base LLM with
exceptional coding performance (e.g., Claude-3.7-Sonnet far outperforms GPT-4o).

1.4. Plan templates

While SpatialAgent can generate a valid plan for many user queries, which can also be refined by
additional user’s feedback, using plan templates for high-frequent tasks can largely improve the sta-
bility (i.e. completion rate) and performance. (Note that in other scientific agentic systems, such
as Google’s Co-Scientist, most computation / agentic burden is spent on making a concrete research
plan). Three plan templates we included for the respective three representative tasks (Supplemen-
tary Fig. 1, 2, 3). These are provided to the SpatialAgent during memory initialization stages and
can be extended per user’s own need and creativity.

Supplementary Figure 1: Templated plan for gene panel design.

1.5. Core prompts in the agentic framework

A sophisticated set of core prompts were incorporated in SpatialAgent to orchestrate its autonomous
behavior in spatial biology analysis. These prompts form the cognitive architecture of the agent,
beginning with a system prompt (Supplementary Fig.4) that establishes the agent’s identity as a
computational biology analyst and defines its operational parameters with the zero-shot ReAct set-
ting (37). The semantic memory initialization prompt (Supplementary Fig.5) structures the agent’s
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Supplementary Figure 2: Templated plan for cell type and tissue niche annotation.

Supplementary Figure 3: Templated plan for inferring cell-cell communications.

knowledge representation, incorporating task templates and available tools. The planning frame-
work (Supplementary Fig.7) implements a structured thought process with five key components:
task status assessment, plan review, action determination, action specification, and success criteria
evaluation. This deliberative cycle enables the agent to monitor progress, adapt strategies, and deter-
mine appropriate next steps. Finally, the action execution prompt (Supplementary Fig.6) provides a
streamlined template for tool calling, ensuring that each operation is precisely formatted with clear
input parameters and expected outputs. Together, these prompts create a cohesive cognitive sys-
tem that guides the agent through complex spatial biology workflows while maintaining contextual
awareness and methodical execution.
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Supplementary Figure 4: System prompt on launching the agent.

Supplementary Figure 5: Prompt on initializing semantic memory.

Supplementary Figure 6: Prompt on making actions (tool calling).
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Supplementary Figure 7: Prompt on proposing and updating plan.
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1.6. Extendability

Supplementary Figure 8: Extendability of SpatialAgent .

SpatialAgentwas designed to be extendable, so it can evolve through three primary mechanisms
(Supplementary Fig.8). First, SpatialAgent ’smemory continuously updates through human mes-
sages, enabling iterative refinement based on user feedback and new information. Second, SpatialA-
gent ’s planning capabilities can be expanded by adding new plan templates that encode domain-
specific knowledge and problem-solving approaches without modifying the underlying architecture.
Third, SpatialAgent ’s action abilities can be enhanced by incorporating new tools that connect to
external services, computational resources, or specialized functions through a consistent interface.
This modular design creates a flexible cycle where users can extend the agent’s functionality through
natural interaction rather than complex reprogramming. For example, researchers can introduce
specialized templates for more specific or sophisticated analysis, add tools for spatial computation
or visualization, and guide the traces through conversational feedback. The result is a system that
adapts to increasingly complex spatial reasoning challenges while maintaining operational coherence
across diverse applications.
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1.7. Generalization

Supplementary Figure 9: Generalizability.

While all results in main-text use autonomous
mode with predefined tools and templates, we
believe a flexible decision-making architecture
is beneficial for robust generalization. It first
distinguishes between simple queries and com-
plex tasks. For non-task queries, it updates
memory and replies directly without planning.
Task-oriented requests activate full capabili-
ties: after memory updates, the agent checks
for suitable plan templates. If available, it fol-
lows predefined strategies; otherwise, it dy-
namically composes tools (mostly coding) to
form custom plans.
A continuous memory–action–planning loop
enables in-execution refinement based on in-
termediate results. This adaptive loop supports
generalization across tasks and incorporates
human feedback, often outperforming purely
autonomous runs. To test generalization, we
next present two unseen tasks requiring novel
plans and coding. SpatialAgent succeeds at cell
type annotation harmonization (Supplemen-
tary Fig.10, 11, 12) but fails at spatial gene
regulatory analysis—a task that remains diffi-
cult even for Claude-Sonnet-3.7 and GPT-O1 (Supplementary Fig.10, 14).

1.7.1. Annotation harmonization

Supplementary Figure 10: Task overview for cell type annotation harmonization. The agent
is given two human lung scRNA-seq datasets with distinct label sets and asked to harmonize the
annotations.
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Supplementary Figure 11: Initial user query and agent response. The agent correctly identifies
the task and starts by inspecting the dataset metadata. 34
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Supplementary Figure 12: Final result: a successful annotation mapping. After a few iterations
using the coding tool, the agent produces a reasonable mapping across datasets.

1.7.2. Gene Regulatory Network Inference with the Spatial Context

Supplementary Figure 13: Task overview for spatial GRN inference. The agent is asked to infer
gene regulatory relationships within spatial transcriptomics data.
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Supplementary Figure 14: Initial query and failed agent response. The agent attempts to reason
about the task and identify relevant steps, but ultimately fails due to the task’s complexity. 36
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1.7.3. Summary

These two tasks demonstrate both the strengths and current limitations of SpatialAgent ’s generaliza-
tion. In the annotation harmonization task, the agent adapts effectively through iterative planning
and code generation, leveraging its flexible architecture. In contrast, the spatial GRN task reveals
difficulties in multi-step reasoning and specific tool orchestration - challenges that remain unsolved
even for the most advanced LLMs.
Addressing these limitations will require stronger coding capabilities, improved reasoning for dy-
namic plan construction, integration of domain-specific tools (e.g., PySCENIC+), and clearer user
prompts that reflect first-hand know-hows. These improvements are critical for boosting the agent’s
completion rates and performance on complex, open-ended scientific tasks.
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1.8. Interaction design of SpatialAgent

Supplementary Figure 15: Design on the interaction mode of SpatialAgent .

Supplementary Figure 16: User interface of SpatialAgent , developed using Gradio package.

SpatialAgent enables dynamic interaction between users and the agentic system (Supplementary
Fig. 15, 16). A user query triggers the agent to update its memory and context. It then revises its
execution plan, refining templates or generating new ones, and invokes external tools or databases
as needed. Tool outputs are integrated with the agent’s knowledge to revise its context. The agent
then responds with insights, visualizations, or recommendations based on the analysis.
This cyclical design enables continuous refinement through interaction, as each human query triggers
a complete processing cycle that builds upon previous exchanges. The structured workflow main-
tains consistency while allowing for adaptive responses to diverse inquiries, creating an intuitive
collaborative experience between researchers and the automated assistant.
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2. Gene panel design

2.1. Computational baselines

Several computational baseline methods were used. Each relies on scRNA-seq data as a reference
from which to select a set of genes predicted to be most informative in spatial contexts.

HVG(Seurat) identifies genes with high expression variance across cells, typically after normalizing
for the relationship between mean expression and variance. This approach prioritizes genes with
biological heterogeneity over technical noise.

GeneBasis greedily selects genes that maximize mutual information with principal components of
the full expression matrix. It iteratively builds a gene panel that preserves the overall structure of
the dataset while minimizing redundancy among selected genes.

Persist uses a persistence-based approach to identify genes that contribute significantly to topolog-
ical features in the data. It quantifies how each gene affects persistent homology metrics, selecting
genes that maintain important structural information across different scales.

Spapros applies a sparse regression framework to identify a minimal set of genes that can recon-
struct the full expression matrix with high fidelity. It leverages L1-regularization to enforce sparsity
while optimizing for genes that capture maximum information about cell states and transitions.

2.2. Human scientists evaluation

2.2.1. Study design

Human expert performance in panel design was systematically evaluated using a two-stage approach.
The human experts included both computational and experimental scientists, who were either pur-
suing a PhD or held an MD/PhD in a related field (e.g., cell biology, biostatistics, computer science)
and had published work.

Stage 1: Domain experts selected 50, 100, or 150 genes for spatial transcriptomics experiments
focusing on the DLPFC. They were provided with the same scRNA-seq dataset used by baseline meth-
ods and SpatialAgent , along with exploratory data analysis (EDA) notebooks. Experts documented
their selections with gene symbols, rankings, and detailed reasoning. They also provided their re-
search backgrounds and were allowed to consult literature (excluding original dataset papers) and
online resources, except for AI tools like chatGPT. We then evaluated these panels using the same
set of metrics as we benchmarked the computational baselines and SpatialAgent .

Stage 2: We implemented a comparative evaluation framework where experts assessed outputs
from various sources (SpatialAgent , GPT-4o, human experts, and SpatialAgent+ human combina-
tions) using a structured 5-point rubric. The rubric evaluated accuracy, reasoning quality, complete-
ness, and conciseness of gene selections. This approach enabled a quantitative comparison of human
and AI performance while exploring the potential of human-AI collaboration in gene panel design
for spatial transcriptomics.
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Panel Design Workflow

D Used literature-based approach with integrated human PFC atlas. Selected cell type
markers from literature and added markers for neuronal activity and neuropathologies
(Alzheimer’s, Schizophrenia).

Ro Used reference dataset only. Applied Persist algorithm to select top 50, 100, and 150 genes
with algorithmic approach without manual curation.

RB Submitted previously designed panel (incorrect tissue).
T Combined reference dataset with literature. Used gene enrichment ranked with Cohen’s

mean and supplemented with known marker genes for key cell types.
C Used reference dataset only. Applied iterative greedy algorithm for kNN graph reconstruc-

tion with focus on graph-based representation of data.
M Used alternative dataset (not the provided one). Selected genes to differentiate predicted

cell types by integrating scRNA-seq with Visium data and using spot-level deconvolution.
P Used multiple datasets (provided + cell type-specific studies). Selected cell type markers

from multiple references and DE genes. Included genes targeting intracellular pathways
and cross-referenced markers across studies.

TY Used reference dataset only. Selected highly variable genes with optimal normalization
techniques.

V Used literature only (did not use reference). Selected cell type markers from broad and
targeted studies, including presynaptic markers, transcription factors, and Schizophrenia
risk genes in GRNs.

HC Used reference dataset only. Selected top DE genes for each cell type with focus on differ-
ential expression.

Supplementary Table 1: Comparison of panel design workflows for spatial transcriptomics

All materials, including instructions, EDA notebooks, and anonymized human scientists’ solutions,
are provided in the supplementary files.

2.2.2. Overview of human solutions

Researchers employed several distinct strategies when selecting genes for spatial transcriptomics pan-
els (Supplementary Table. 1). Most researchers relied on either the provided reference dataset or lit-
erature sources, with only a few integrating multiple data sources. Their selection methods typically
fell into three categories: (1) algorithmic approaches (Persist algorithm, iterative greedy methods, or
highly variable gene selection), (2) differential expression analysis to identify cell type-specific mark-
ers, or (3) knowledge-driven selection of known markers from literature. The more comprehensive
approaches, such as those from P and V, combined multiple strategies by cross-referencing markers
from different sources and including genes related to specific biological processes or pathways of in-
terest. Some researchers focused exclusively on cell type identification, while others extended their
panels to capture pathway activities or disease-relevant genes.
We provide anonymized human expert designs in the supplement to support future refinement and
improvement by other practitioners.

40

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2025. ; https://doi.org/10.1101/2025.04.03.646459doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.03.646459
http://creativecommons.org/licenses/by-nc/4.0/


SpatialAgent: An autonomous AI agent for spatial biology

2.3. Pairwise comparisons on cell type prediction

We also conducted a pairwise statistical comparison of cell-type prediction performance across dif-
ferent methods on the DLPFC dataset, using gene panels of 50 and 100 genes. Each entry in the
tables below reports the t-statistic and corresponding p-value (in parentheses) from independent
two-sample t-tests. A positive t-statistic indicates that the method in the row outperforms the method
in the column. Statistically significant differences (p < 0.05) are highlighted in bold. As panel size
increases, performance gaps between SpatialAgent and other baselines become less pronounced.
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Supplementary Figure 17: Accuracy in predicting cell type.
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Supplementary Figure 18: F1 score in predicting cell type.

Supplementary Table 2: Pairwise statistical comparison of cell-type prediction using 50-gene panels.
Values represent test statistics from independent t-tests, with p-values in parentheses. Statistically
significant differences are bolded (∗𝑝 < 0.05), same notations below.

Method SpatialAgent GeneBasis Persist HVG (Seurat) Spapros
SpatialAgent - 2.668 (0.014) 3.629 (0.001) 2.625 (0.015) 2.668 (0.014)
GeneBasis -2.668 (0.014) - 0.774 (0.447) -0.440 (0.664) 0.000 (1.000)
Persist -3.629 (0.001) -0.774 (0.447) - -1.329 (0.198) -0.774 (0.447)
HVG (Seurat) -2.625 (0.015) 0.440 (0.664) 1.329 (0.198) - 0.440 (0.664)
Spapros -2.668 (0.014) 0.000 (1.000) 0.774 (0.447) -0.440 (0.664) -

2.3.1. More metrics on location restoration

Essentially most of other metrics (clustering-based) as well as the spatially expressed variations are
highly correlated with the cell type and location prediction performance, the reader can easily cal-
culate on their ends as we release the data.
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Supplementary Table 3: Pairwise statistical comparison of cell-type prediction using 100-gene panels.

Method SpatialAgent GeneBasis Persist HVG (Seurat) Spapros
SpatialAgent - 1.533 (0.139) 2.903 (0.008) 1.518 (0.143) 1.533 (0.139)
GeneBasis -1.533 (0.139) - 1.362 (0.187) -0.203 (0.841) 0.000 (1.000)
Persist -2.903 (0.008) -1.362 (0.187) - -1.687 (0.106) -1.362 (0.187)
HVG (Seurat) -1.518 (0.143) 0.203 (0.841) 1.687 (0.106) - 0.203 (0.841)
Spapros -1.533 (0.139) 0.000 (1.000) 1.362 (0.187) -0.203 (0.841) -
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Supplementary Figure 19: Correlation in predicting x coordinates.
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Supplementary Figure 20: Correlation in predicting y coordinates.

2.3.2. Performance via human expert rating

Human scientists were asked to rate anonymized gene panels that included a mixture of those de-
signed by other scientists, the SpatialAgent and hybrid designs of SpatialAgent incorporating human-
panels. Participants were asked to rate each panel across three categories: accuracy (can the given
panel accurately map the DLPFC?), completeness (is the designed panel proposed complete?) and
reasoning (is the reasoning given for the gene panel selection logical and insightful?). Scientist scored
panels from 1 (Poor) to 5 (Excellent). Mean score for each panel are summarized in Supplementary
Fig.21 below.
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SpatialAgent Human Scientists Human Scientists + SpatialAgent

Supplementary Figure 21: Human evaluation of panel design
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3. Cell type and tissue niche annotation

3.1. Overview

Cell type and tissue niche annotation is a crucial step in spatial transcriptomics, enabling the bio-
logical interpretation of complex spatial gene expression patterns. Unlike scRNA-seq, spatial tran-
scriptomics preserves tissue context, allowing researchers to identify both cell types and their spatial
organization within micro-environments. This integration is essential for understanding cellular in-
teractions, developmental processes, and disease mechanisms in their native spatial contexts.
The annotation process typically follows a hierarchical structure, from broad cell type categories (Tier
1) to finer subtypes (Tiers 2–3), alongside spatial domain identification. Annotations are derived
from marker gene expression, spatial coordinates, and morphological features. The integration of
these multimodal data presents computational and biological challenges, especially in developing or
pathological tissues where cell states exist along a continuum rather than discrete categories.

3.2. Baselines

We compare SpatialAgentwith two automated cell type annotation methods:

CellTypist is a supervised machine learning approach using multinomial logistic regression trained
on curated reference datasets. It supports hierarchical classification with probabilistic outputs but is
limited by the quality and scope of its training data.

GPTCellType is LLM-based method that interprets gene expression profiles and generates cell type
annotations with explanatory rationales. It integrates diverse information sources and adapts to
novel cell types but may hallucinate annotations when faced with ambiguous expression patterns.
To enable side-by-side comparison, we run the GPTCellType directly on the leiden cluster calculated
from SpatialAgent .
To ensure fair comparisons, we harmonize all annotations, including those from computational meth-
ods, human scientists, and SpatialAgent , to a common tier-1 reference set. We use the original
author-provided annotations as ground truth, acknowledging the inherent bias in this setting.

3.3. Per cluster annotation between GPTCellType and SpatialAgent

We next compare SpatialAgentwith GPTCellType on the same set of leiden clustering, noting that the
authors did not use the same set cluster for annotation, but we notice that SpatialAgent can provide
a descent annotation in Tier-1 annotations.

3.4. Removing small clusters in UTAG

Building on the original UTAG algorithm, we employ a nearest-neighbor approach to reassign cells
from small clusters to larger, more established ones. Specifically, we identify clusters with fewer
than a specified threshold (default: 100 cells) for removal. For each batch, we reassign cells in
small clusters by finding their five nearest spatial neighbors among reference cells (i.e., those in
larger clusters). The most common cluster label among these neighbors is then assigned to the cell,
ensuring spatial coherence by favoring proximity-based reassignments over arbitrary ones.
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Supplementary Figure 22: Composition of author annotations across Leiden clusters used by Spa-
tialAgent and GPTCellType.

3.5. Analysis of human expert annotations

Researchers employed consistent approaches for cell and niche annotation in spatial transcriptomics
data (Supplementary Table. 4). For cell annotation, most relied on computational clustering (pri-
marily Leiden) followed by either manual annotation with marker genes or automated label transfer
methods like CellTypist or TACCO. Many provided hierarchical (multi-tier) annotations to capture
both major cell types and subtypes. Only one researcher (TL) used a unique co-expression pattern
approach instead of clustering.
For niche annotation, UTAG spatial clustering was the predominant method, showing remarkable
consistency across researchers. The differences emerged primarily in how researchers assigned bi-
ological meaning to these spatial clusters - most used a combination of spatial positioning and ref-
erence to anatomical images, with some incorporating prior anatomical knowledge (particularly of
heart structures). Overall, researchers balanced computational methods with biological knowledge,
using spatial context to refine their annotations.
We provide the original human annotations in Supplementary Fig. 27-32. For cell annotations, we
visualize them within the same UMAP clustering structure, where each scientist’s annotations rep-
resent their individual interpretations. For tissue niche annotations, we map them onto the spatial
coordinates of each MERFISH spot.

3.6. Confusion matrix

We plot the confusion matrices for cell type annotations (Supplementary Fig.33–41) and tissue niche
annotations (Supplementary Fig.42–50).

3.7. Summary

Accurate cell type and tissue niche annotation is key to interpreting spatial transcriptomics. With
detailed comparisons, SpatialAgent outperforms existing methods in Tier-1 cell type annotation and
aligns well with authors. We also improved UTAG clustering by removing small clusters to boost
spatial coherence in niche annotation.
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Cell Annotation Workflow Niche Annotation Workflow

HC Combined annotation on Leiden clusters with
CellTypist’ transferred labels as reference

Used UTAG for spatial clustering

L Performed Leiden clustering with majority
voting for consensus-based cell type annota-
tion. Provided 3 tiers of annotation

Labeled niches based on cell annotations
with clear distributions (e.g., Atrium, Ven-
tricular) for first tier; considered spatial
left/right position for tier 2

Lh Performed Leiden clustering with manual an-
notation using marker gene sets and DEG
(per Scanpy tutorial). Projected cell types
spatially. Used spatial position and key
marker expression for final annotation. Pro-
vided 3-tier annotation

Used UTAG for spatial clustering. Labeled
structures based on position and anatom-
ical knowledge of heart (e.g., "chamber
wall is thicker on the left ventricle")

La Performed Leiden clustering and analyzed
expression of predefined marker genes in
clusters. Used multiple genes per cell type.
Mapped both major cell type and subtypes

Used UTAG for spatial clustering. La-
beled structures based on position, pro-
vided anatomical image, and additional
sources

MH Performed Leiden clustering and analyzed
predefined marker genes in clusters. Used
(typically) single marker gene to differenti-
ate cell types. Projected cell types spatially
and used position for final annotation

Used UTAG for spatial clustering. Labeled
structures based on position and provided
anatomical image

TL Annotated based on gene co-expression pat-
terns

NA

Lu Unknown Unknown, likely misordered annotations
P Performed label transfer using TACCO with

scRNA-seq reference dataset of human heart.
Projected cell types spatially. Performed Lei-
den clustering and DEG for marker genes, us-
ing key markers for second tier annotation

Used UTAG for spatial clustering. Labeled
structures based on position and provided
anatomical image

Supplementary Table 4: Comparison of cell and niche annotation methodologies
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Supplementary Figure 23: Annotation of GPTCellType and SpatialAgent on Leiden clusters (1/4)
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Supplementary Figure 24: Annotation of GPTCellType and SpatialAgent on Leiden clusters (2/4)
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Supplementary Figure 25: Annotation of GPTCellType and SpatialAgent on Leiden clusters (3/4)
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Supplementary Figure 26: Annotation of GPTCellType and SpatialAgent on Leiden clusters (4/4)
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Supplementary Figure 27: Original Tier 1 cell type annotations.
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Supplementary Figure 28: Original Tier 2 cell type annotations.
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Supplementary Figure 29: Original Tier 1 tissue niche annotations (1/2).
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Supplementary Figure 30: Original Tier 1 tissue niche annotations (2/2).
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Supplementary Figure 31: Original Tier 2 tissue niche annotations (1/2).
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Supplementary Figure 32: Original Tier 2 tissue niche annotations (2/2).
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Supplementary Figure 33: Confusion matrix of SpatialAgent cell type annotation.
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Supplementary Figure 34: Confusion matrix of GPTCellType cell type annotation.
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Supplementary Figure 35: Confusion matrix of scientist 𝐻𝐶 (also CellTypist) cell type annotation.
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Supplementary Figure 36: Confusion matrix of human scientist 𝐿 cell type annotation.
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Supplementary Figure 37: Confusion matrix of human scientist 𝐿ℎ cell type annotation.
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Supplementary Figure 38: Confusion matrix of human scientist 𝐿𝑢 cell type annotation.
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Supplementary Figure 39: Confusion matrix of human scientist 𝑀𝐻 cell type annotation.
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Supplementary Figure 40: Confusion matrix of human scientist 𝑃 cell type annotation.
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Supplementary Figure 41: Confusion matrix of human scientist 𝑇𝐿 tissue niche annotation.
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Supplementary Figure 42: Confusion matrix of SpatialAgent tissue niche annotation.
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Supplementary Figure 43: Confusion matrix of human scientist 𝐻𝐶 tissue niche annotation.
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Supplementary Figure 44: Confusion matrix of human scientist 𝐿 tissue niche annotation.

68

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2025. ; https://doi.org/10.1101/2025.04.03.646459doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.03.646459
http://creativecommons.org/licenses/by-nc/4.0/


SpatialAgent: An autonomous AI agent for spatial biology

Conduction System
Left Ventricle

Right Atrium
Right Ventricle Valves

unmatched

Compared Annotation

Conduction System

Flow Tracts

Left Atrium

Left Ventricle

Right Atrium

Right Ventricle

Valves

Au
th

or
's 

An
no

ta
tio

n

1742
(15.9%)

4027
(36.7%)

3332
(30.4%)

985
(9.0%)

476
(4.3%)

397
(3.6%)

0
(0.0%)

0
(0.0%)

670
(7.5%)

1
(0.0%)

2744
(30.7%)

5511
(61.7%)

0
(0.0%)

3
(0.0%)

14820
(82.6%)

43
(0.2%)

134
(0.7%)

2938
(16.4%)

7
(0.0%)

80881
(90.8%)

17
(0.0%)

6775
(7.6%)

24
(0.0%)

1369
(1.5%)

0
(0.0%)

1
(0.0%)

26881
(97.3%)

25
(0.1%)

14
(0.1%)

692
(2.5%)

0
(0.0%)

1282
(3.5%)

2
(0.0%)

32958
(90.9%)

2
(0.0%)

2026
(5.6%)

488
(1.3%)

6040
(16.0%)

490
(1.3%)

9854
(26.0%)

13100
(34.6%)

7882
(20.8%)

Accuracy: 0.680  |  Micro Precision: 0.749  |  Macro Precision: 0.526  |  Unmatched Spots: 20815

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 Tr
ue

 C
la

ss

Supplementary Figure 45: Confusion matrix of human scientist 𝐿ℎ tissue niche annotation.
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Supplementary Figure 46: Confusion matrix of human scientist 𝐿𝑎 tissue niche annotation.
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Supplementary Figure 47: Confusion matrix of human scientist 𝐿𝑢 tissue niche annotation.
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Supplementary Figure 48: Confusion matrix of human scientist 𝐿 tissue niche annotation.
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Supplementary Figure 49: Confusion matrix of human scientist 𝑃 tissue niche annotation.
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Supplementary Figure 50: Confusion matrix of human scientist 𝑇𝐿 tissue niche annotation.
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SpatialAgent: An autonomous AI agent for spatial biology

4. Mining cell-cell interaction and report generation

4.1. Overview

Supplementary Figure 51: Overview of spatial transcriptomics data used for cell–cell interaction
analysis. The dataset captures spatial and molecular profiles across disease stages—onset, peak
inflammation, and recovery—enabling investigation of dynamic tissue remodeling and intercellular
communication.

Advances in spatial transcriptomics (e.g., MERFISH) enable high-resolution mapping of cellular iden-
tity, location, and molecular output within tissues, providing critical insights into disease progression
and tissue remodeling (Supplementary Fig.51). By capturing spatial and molecular changes across
disease onset, peak inflammation, and recovery, these techniques facilitate a deeper understanding
of inflammatory conditions such as colitis.
Comparative analysis plays a central role in extracting biological insights. Systematic comparisons
between healthy and diseased states, or across disease stages, reveal key shifts in gene expression,
cell populations, and spatial organization. These analyses highlight tissue remodeling events, such
as immune infiltration or the emergence of inflammation-associated fibroblasts (IAFs), pinpointing
mechanisms of damage and potential therapeutic windows.
Equally important is understanding cell-cell interaction (CCI), which governs tissue responses. In
inflamed environments, fibroblasts and immune cells exchange molecular signals (e.g., cytokines,
chemokines) that orchestrate inflammation and repair. Mapping these interactions uncovers regula-
tory networks that maintain or disrupt tissue balance, explaining immune escalation, tissue remod-
eling, and healing processes.
SpatialAgent leverages multimodal spatial transcriptomic datasets to systematically extract CCI in-
sights. It integrates ligand-receptor analysis, neighborhood-based correlations, and factor-driven
networks through a multi-step pipeline: preprocessing, interaction inference using LIANA+ (aggre-
gating multiple ligand-receptor tools), and factor analysis to determine key drivers of intercellular
communication. The findings are compiled into structured reports highlighting biological patterns,
key signaling pathways, and potential therapeutic targets.
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SpatialAgent: An autonomous AI agent for spatial biology

4.2. Summarization

This section presents a comparative summary of CCI across different conditions, focusing on inter-
action network shifts, cell type distributions, and tissue structures.

4.2.1. Condition specific analysis

SpatialAgent examines CCI changes across disease stages, such as increased pro-inflammatory sig-
naling (e.g., TNF, IL-6) during peak inflammation and fibroblast-driven repair signals in recovery
(Supplementary Fig. 52).

Supplementary Figure 52: Summary of sample information.

4.2.2. Cell type specific analysis

Comparative analysis identifies dynamically interacting cell populations. For example, inflammatory
fibroblasts in colitis show increased signaling with T cells and monocytes via TGF-𝛽 and IL-11, while
epithelial-stromal interactions remain stable, underscoring immune-driven inflammation (Supple-
mentary Fig. 53–59).

4.2.3. Tissue region specific analysis

SpatialAgent assesses spatial variation in CCI across tissue regions. In colitis, immune infiltration
and fibroblast expansion localize to specific regions, refining insights into tissue heterogeneity and
microenvironment-specific signaling. Summaries for representative tissue regions are shown in Sup-
plementary Fig. 60–63.

4.3. Factor analysis in CCI

To interpret complex intercellular signaling patterns, SpatialAgent performs factor analysis to un-
cover underlying regulatory programs and communication modules. This approach identifies key
drivers of cell–cell interactions by combining tensor decomposition, pathway enrichment, and regu-
latory network inference.

LIANA and Cell2Cell integration SpatialAgent integrates LIANA for robust ligand-receptor in-
teraction quantification and employs Cell2Cell to identify global communication patterns through
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Supplementary Figure 53: Summary of IAF2 cells within DSS3 samples.

tensor-based decomposition.
Pathway and network analysis SpatialAgent contextualizes communication modules within biolog-
ical pathways using PROGENy, linking interactions to transcriptional responses. This enables:

• Pathway enrichment analysis (e.g., TGF-𝛽 in fibroblast activation, IFN-𝛾 in immune response).
• Cross-species gene mapping for translational insights.
• Regulatory network inference, predicting transcription factors (e.g., NF-𝜅B, SMAD3) mediating
key interactions.

4.4. Generated report

SpatialAgent produces structured reports from spatial transcriptomic analyses by integrating statis-
tical significance filtering (p<0.01) with contextual scientific narratives. Reports summarize spatial
pattern information, cellular interactions, and condition-specific effects, transforming complex com-
putational results into accessible scientific insights (Supplementary Fig. 64–71).
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Supplementary Figure 54: Summary of Macrophage cells within DSS3 samples.

Supplementary Figure 55: Summary of Treg cells within DSS21 samples.
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Supplementary Figure 56: Summary of IAF2 cells across all conditions.
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Supplementary Figure 57: Summary of Macrophage cells across all conditions.
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Supplementary Figure 58: Summary of IAE1 cells across all conditions.
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Supplementary Figure 59: Summary of Colonocyte cells across all conditions.
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Supplementary Figure 60: Summary of MU10 tissue region across all conditions.
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Supplementary Figure 61: Summary of LUM tissue region across all conditions.
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Supplementary Figure 62: Summary of MU1 tissue region across all conditions (1/2).
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Supplementary Figure 63: Summary of MU1 tissue region across all conditions (2/2).
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Supplementary Figure 64: SpatialAgent generated report (1/8)
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Supplementary Figure 65: SpatialAgent generated report (2/8)
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Supplementary Figure 66: SpatialAgent generated report (3/8)
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Supplementary Figure 67: SpatialAgent generated report (4/8)
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Supplementary Figure 68: SpatialAgent generated report (5/8)
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Supplementary Figure 69: SpatialAgent generated report (6/8)
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Supplementary Figure 70: SpatialAgent generated report (7/8)
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Supplementary Figure 71: SpatialAgent generated report (8/8)
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5. Designing additional customized genes upon Xenium 5k panel

5.1. Overview

The standard Xenium 5k panel provides broad coverage but may lack key genes necessary for special-
ized biological contexts. Here, we designed a customized gene set to enhance spatial transcriptomic
resolution in prostate cancer mouse models under different treatments. By selecting 100 additional
genes using SpatialAgent , we improved the characterization of stromal, immune, and epithelial com-
partments: critical for understanding tumor progression and immune interactions. This customiza-
tion refined cell-type resolution, enhanced clustering quality, and uncovered key ligand-receptor
interactions within the tumor microenvironment.

5.2. Customized gene panel improves cell-type resolution and clustering

To assess the impact of the additional genes, we compared clustering performance across different
gene selection strategies on the reference scRNA-seq data. Although improvements are subtle in visu-
alizations (Supplementary Fig. 72-75), quantitative metrics indicate enhanced clustering resolution.
Specifically, incorporating 100 genes selected via SpatialAgent led to improved clustering scores com-
pared to both the Xenium 5k panel alone and a random selection of 100 genes. The random selection
did not contribute meaningfully to the resolution, slightly degrading performance compared to the
Xenium 5k panel alone.

5.3. Customized gene panel enhances the capture of cell-cell interactions

Beyond improving clustering, adding 100 genes via SpatialAgent enhanced detection of ligand–receptor
interactions in the tumormicroenvironment, based on a scRNA-seq reference dataset. Expanded gene
coverage revealed richer cell–cell communication, especially in stromal and immune compartments,
offering deeper insight into tumor–immune interactions and treatment responses. We compared
interaction detection across gene selection strategies and found that SpatialAgent -selected genes
yielded more significant ligand–receptor pairs than random panels, highlighting its value.
In the Xenium-only analysis (Supplementary Fig. 76), the strongest signals centered on immune-
modulatory ligands such as Jag1–Notch2 and Vcan–Tlr2, which dominate fibroblast–immune crosstalk.
In contrast, incorporating SpatialAgent (Supplementary Fig. 77) shifted the focus toward laminin -
integrin pairs (e.g., Lamb1–Itga3_Itgb1), highlighting enhanced extracellular matrix remodeling and
cell-adhesion pathways.
Distinct interaction patterns also emerged across immune subpopulations. Larger or more intensely
colored circles for certain ligand-receptor pairs (e.g., Igf1–Insr in Tregs vs. myeloid DCs) suggest
diverse regulatory circuits at play. Notably, fibroblasts engaged in multiple robust interactions, rein-
forcing their role in shaping immune infiltration and the local microenvironment.
Though basal epithelial cells had fewer strong signals, they mediated key integrin-based interactions
potentially relevant for tumor maintenance and immune evasion. Overall, integrating Xenium with
spatially informed gene panels sharpens our view of tumor–immune dynamics, emphasizing both
immune-modulatory and ECM-related signaling.

5.4. Summary

Our results demonstrate that a customized gene panel can significantly improve spatial transcrip-
tomic resolution, refining clustering and cell-cell interaction analyses. We will update the results as
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Supplementary Figure 72: UMAPs using Xenium 5k Pan Tissue panel

wet-lab data finishes the collection progresses.
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Supplementary Figure 73: UMAPs using Xenium 5k panel and 100 random selected genes
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Supplementary Figure 74: UMAPs using Xenium 5k panel and 100 genes from SpatialAgent
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Supplementary Figure 75: UMAPs using full 23k genes
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Supplementary Figure 76: Ligand receptor analysis using Xenium

Supplementary Figure 77: Ligand receptor analysis using Xenium + SpatialAgent
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6. Tools

We attached the description (doc strings) of each tool (Supplementary Fig.78-92) and prompts (Sup-
plementary Fig.93-108.)

Supplementary Figure 78: Tool description (1/15)

Supplementary Figure 79: Tool description (2/15)

Supplementary Figure 80: Tool description (3/15)
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Supplementary Figure 81: Tool description (4/15)

Supplementary Figure 82: Tool description (5/15)

Supplementary Figure 83: Tool description (6/15)

Supplementary Figure 84: Tool description (7/15)
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Supplementary Figure 85: Tool description (8/15)

Supplementary Figure 86: Tool description (9/15)

Supplementary Figure 87: Tool description (10/15)

Supplementary Figure 88: Tool description (11/15)
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Supplementary Figure 89: Tool description (12/15)

Supplementary Figure 90: Tool description (13/15)

Supplementary Figure 91: Tool description (14/15)
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Supplementary Figure 92: Tool description (15/15)

Supplementary Figure 93: Tool prompt (1/16)

Supplementary Figure 94: Tool prompt (2/16)

Supplementary Figure 95: Tool prompt (3/16)
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Supplementary Figure 96: Tool prompt (4/16)

Supplementary Figure 97: Tool prompt (5/16)

Supplementary Figure 98: Tool prompt (6/16)
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Supplementary Figure 99: Tool prompt (7/16)

Supplementary Figure 100: Tool prompt (8/16)
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Supplementary Figure 101: Tool prompt (9/16)

Supplementary Figure 102: Tool prompt (10/16)
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Supplementary Figure 103: Tool prompt (11/16)

Supplementary Figure 104: Tool prompt (12/16)

Supplementary Figure 105: Tool prompt (13/16)
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Supplementary Figure 106: Tool prompt (14/16)

Supplementary Figure 107: Tool prompt (15/16)

Supplementary Figure 108: Tool prompt (16/16)
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